The Chicken Frizzle Feather Is Due to an a-Keratin (KRT75) Mutation That Causes a Defective Rachis
نویسندگان
چکیده
Feathers have complex forms and are an excellent model to study the development and evolution of morphologies. Existing chicken feather mutants are especially useful for identifying genetic determinants of feather formation. This study focused on the gene F, underlying the frizzle feather trait that has a characteristic curled feather rachis and barbs in domestic chickens. Our developmental biology studies identified defects in feather medulla formation, and physical studies revealed that the frizzle feather curls in a stepwise manner. The frizzle gene is transmitted in an autosomal incomplete dominant mode. A whole-genome linkage scan of five pedigrees with 2678 SNPs revealed association of the frizzle locus with a keratin gene-enriched region within the linkage group E22C19W28_E50C23. Sequence analyses of the keratin gene cluster identified a 69 bp in-frame deletion in a conserved region of KRT75, an a-keratin gene. Retroviral-mediated expression of the mutated F cDNA in the wild-type rectrix qualitatively changed the bending of the rachis with some features of frizzle feathers including irregular kinks, severe bending near their distal ends, and substantially higher variations among samples in comparison to normal feathers. These results confirmed KRT75 as the F gene. This study demonstrates the potential of our approach for identifying genetic determinants of feather forms. Citation: Ng CS, Wu P, Foley J, Foley A, McDonald M-L, et al. (2012) The Chicken Frizzle Feather Is Due to an a-Keratin (KRT75) Mutation That Causes a Defective Rachis. PLoS Genet 8(7): e1002748. doi:10.1371/journal.pgen.1002748 Editor: Dennis Roop, University of Colorado Health Sciences Center, United States of America Received November 18, 2011; Accepted April 19, 2012; Published July 19, 2012 Copyright: 2012 Ng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: W-HL acknowledges the National Science Council of Taiwan grant number 99-2321-B-001-041-MY2. C-MC acknowledges the National Institutes of Health of USA grant number AR 47364. W-TJ acknowledges the funding support from Academia Sinica Research Program on Nanoscience and Nanotechnology. CSN acknowledges the postdoctoral fellowship from Academia Sinica of Taiwan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] (W-HL); [email protected] (C-MC) . These authors contributed equally to this work.
منابع مشابه
The Chicken Frizzle Feather Is Due to an α-Keratin (KRT75) Mutation That Causes a Defective Rachis
Feathers have complex forms and are an excellent model to study the development and evolution of morphologies. Existing chicken feather mutants are especially useful for identifying genetic determinants of feather formation. This study focused on the gene F, underlying the frizzle feather trait that has a characteristic curled feather rachis and barbs in domestic chickens. Our developmental bio...
متن کاملStructure and Properties of Chicken Feather Barbs as Natural Protein Fibers
The structure and properties of chicken feather barbs makes them unique fibers preferable for several applications. The presence of hollow honeycomb structures, their low density, high flexibility and possible structural interaction with other fibers when made into products such as textiles provides them unique properties unlike any other natural or synthetic fibers. No literature is available ...
متن کاملKeratin Production by Decomposing Feather Waste Using Some Local Bacillus spp. Isolated from Poultry Soil
Background; Feather waste is generated in large amounts as a by-product of commercial poultry processing. The main component of feather is keratin. The main purpose of this study was to identify Bacillus spp. (the keratinolytic bacteria) that are able to degrade the feather for producing keratin. Methods; Bacillus spp. Were isolated from the waste of poultries located in Miyaneh city. The bact...
متن کاملSelective biodegradation of keratin matrix in feather rachis reveals classic bioengineering.
Flight necessitates that the feather rachis is extremely tough and light. Yet, the crucial filamentous hierarchy of the rachis is unknown-study hindered by the tight chemical bonding between the filaments and matrix. We used novel microbial biodegradation to delineate the fibres of the rachidial cortex in situ. It revealed the thickest keratin filaments known to date (factor >10), approximately...
متن کاملPerformance comparison of laying hens segregating for the frizzle gene under thermoneutral and high ambient temperatures.
The effect on thermotolerance of the incompletely dominant frizzle (F) gene, which causes feather curling and feather mass reduction, was investigated in 281 laying hens that were homozygous for the frizzle mutation (FF), heterozygous (FN), or normally feathered (NN). One-half of the birds were kept under standard conditions (22°C) and half were exposed to high ambient temperatures (32°C) betwe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012